Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.618
1.
J Immunol Res ; 2024: 5582151, 2024.
Article En | MEDLINE | ID: mdl-38690552

Unlike T cells in other tissues, uterine T cells must balance strong immune defense against pathogens with tolerance to semiallogeneic fetus. Our previous study fully elucidated the characteristics of γδT cells in nonpregnant uterus and the mechanism modulated by estrogen. However, comprehensive knowledge of the immunological properties of αßT (including CD4+T cells and CD8+T) cells in nonpregnancy uterus has not been acquired. In this study, we fully compared the immunological properties of αßT cells between uterus and blood using mouse and human sample. It showed that most of CD4+T cells and CD8+T cells in murine uterus and human endometrium were tissue resident memory T cells which highly expressed tissue residence markers CD69 and/or CD103. In addition, both CD4+T cells and CD8+T cells in uterus highly expressed inhibitory molecular PD-1 and cytokine IFN-γ. Uterine CD4+T cells highly expressed IL-17 and modulated by transcription factor pSTAT3. Moreover, we compared the similarities and differences between human and murine uterine T cell phenotype. Together, uterine CD4+T cells and CD8+ cells exhibited a unique mixed signature of T cell dysfunction, activation, and effector function which enabled them to balance strong immune defense against pathogens with tolerance to fetus. Our study fully elucidated the unique immunologic properties of uterine CD4+T and CD8+T cells and provided a base for further investigation of functions.


Antigens, CD , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Uterus , Female , CD8-Positive T-Lymphocytes/immunology , Animals , Humans , Mice , CD4-Positive T-Lymphocytes/immunology , Uterus/immunology , Antigens, CD/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Integrin alpha Chains/metabolism , Memory T Cells/immunology , STAT3 Transcription Factor/metabolism , Interferon-gamma/metabolism , Lectins, C-Type/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Interleukin-17/metabolism , Lymphocyte Activation/immunology , Immunologic Memory
2.
Int J Biol Macromol ; 267(Pt 1): 131334, 2024 May.
Article En | MEDLINE | ID: mdl-38582475

Chitin and its derivative chitosan (Q) are abundant structural elements in nature. Q has modulatory and anti-inflammatory effects and also regulates the expression of adhesion molecules. The interaction between cells expressing the αEß7 integrin and E-cadherin facilitates tolerogenic signal transmission and localization of lymphocytes at the frontline for interaction with luminal antigens. In this study we evaluated the ability of orally administered Q to stimulate E-cadherin and CD103 expression in vitro and in vivo. Our findings show that Q promoted epithelial cell migration, accelerated wound healing and increased E-cadherin expression in IEC-18 cells and isolated intestinal epithelial cells (IECs) after Q feeding. The upregulation of E-cadherin was dependent on TLR4 and IFNAR signaling, triggering CD103 expression in lymphocytes. Q reinforced the E-cadherin-αEß7 axis, crucial for intestinal barrier integrity and contributed to the localization of lymphocytes on the epithelium.


Antigens, CD , Cadherins , Chitosan , Integrin alpha Chains , Intestinal Mucosa , Signal Transduction , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Chitosan/pharmacology , Chitosan/chemistry , Cadherins/metabolism , Signal Transduction/drug effects , Integrin alpha Chains/metabolism , Mice , Antigens, CD/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Cell Movement/drug effects , Cell Line , Intestines/drug effects , Rats , Male
3.
Nat Immunol ; 25(5): 834-846, 2024 May.
Article En | MEDLINE | ID: mdl-38561495

Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.


Antigens, CD , Apyrase , Integrin alpha Chains , Receptors, Antigen, T-Cell , Signal Transduction , Humans , Antigens, CD/metabolism , Antigens, CD/immunology , Integrin alpha Chains/metabolism , Signal Transduction/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Animals , Mice , Cytotoxicity, Immunologic , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Cell Line, Tumor , T-Lymphocytes, Cytotoxic/immunology , Neoplasms/immunology , Neoplasms/therapy
5.
Nature ; 628(8009): 854-862, 2024 Apr.
Article En | MEDLINE | ID: mdl-38570678

The intestinal immune system is highly adapted to maintaining tolerance to the commensal microbiota and self-antigens while defending against invading pathogens1,2. Recognizing how the diverse network of local cells establish homeostasis and maintains it in the complex immune environment of the gut is critical to understanding how tolerance can be re-established following dysfunction, such as in inflammatory disorders. Although cell and molecular interactions that control T regulatory (Treg) cell development and function have been identified3,4, less is known about the cellular neighbourhoods and spatial compartmentalization that shapes microorganism-reactive Treg cell function. Here we used in vivo live imaging, photo-activation-guided single-cell RNA sequencing5-7 and spatial transcriptomics to follow the natural history of T cells that are reactive towards Helicobacter hepaticus through space and time in the settings of tolerance and inflammation. Although antigen stimulation can occur anywhere in the tissue, the lamina propria-but not embedded lymphoid aggregates-is the key microniche that supports effector Treg (eTreg) cell function. eTreg cells are stable once their niche is established; however, unleashing inflammation breaks down compartmentalization, leading to dominance of CD103+SIRPα+ dendritic cells in the lamina propria. We identify and validate the putative tolerogenic interaction between CD206+ macrophages and eTreg cells in the lamina propria and identify receptor-ligand pairs that are likely to govern the interaction. Our results reveal a spatial mechanism of tolerance in the lamina propria and demonstrate how knowledge of local interactions may contribute to the next generation of tolerance-inducing therapies.


Intestinal Mucosa , Mucous Membrane , T-Lymphocytes, Regulatory , Animals , Female , Male , Mice , Antigens, CD/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Gene Expression Profiling , Helicobacter hepaticus/immunology , Helicobacter Infections/immunology , Helicobacter Infections/microbiology , Immune Tolerance/immunology , Inflammation/immunology , Inflammation/microbiology , Inflammation/pathology , Integrin alpha Chains/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mucous Membrane/cytology , Mucous Membrane/immunology , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Single-Cell Gene Expression Analysis , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/cytology , Transcriptome
6.
Cancer Cell ; 42(4): 682-700.e12, 2024 Apr 08.
Article En | MEDLINE | ID: mdl-38428409

Cancer-associated fibroblasts (CAFs) exhibit considerable heterogeneity in advanced cancers; however, the functional annotation and mechanism of CAFs in early-stage cancers remain elusive. Utilizing single-cell RNA sequencing and spatial transcriptomic, we identify a previously unknown PDGFRα+ITGA11+ CAF subset in early-stage bladder cancer (BCa). Multicenter clinical analysis of a 910-case cohort confirms that PDGFRα+ITGA11+ CAFs are associated with lymphovascular invasion (LVI) and poor prognosis in early-stage BCa. These CAFs facilitate LVI and lymph node (LN) metastasis in early-stage BCa, as evidenced in a PDGFRα+ITGA11+ CAFs-specific deficient mouse model. Mechanistically, PDGFRα+ITGA11+ CAFs promote lymphangiogenesis via recognizing ITGA11 surface receptor SELE on lymphatic endothelial cells to activate SRC-p-VEGFR3-MAPK pathway. Further, CHI3L1 from PDGFRα+ITGA11+ CAFs aligns the surrounding matrix to assist cancer cell intravasation, fostering early-stage BCa LVI and LN metastasis. Collectively, our study reveals the crucial role of PDGFRα+ITGA11+ CAFs in shaping metastatic landscape, informing the treatment of early-stage BCa LVI.


Cancer-Associated Fibroblasts , Receptor, Platelet-Derived Growth Factor alpha , Animals , Humans , Mice , Cancer-Associated Fibroblasts/pathology , Endothelial Cells , Fibroblasts/metabolism , Integrin alpha Chains , Lymphatic Metastasis/pathology , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism
7.
Eur J Immunol ; 54(5): e2350839, 2024 May.
Article En | MEDLINE | ID: mdl-38430190

The active vitamin A metabolite, all-trans-retinoic acid (RA), primes precursor dendritic cells (DCs) into a mucosal phenotype with tolerogenic properties characterized by the expression of integrin CD103. CD103+ DCs can counteract pathogenic Th1 and Th17 in inflammatory bowel disease (IBD) or celiac disease (CD). Tolerogenic manipulation of DCs using nanoparticles carrying tolerogenic adjuvants and disease-specific antigens is a valuable treatment strategy to induce antigen-specific mucosal tolerance in vivo. Here, we investigated the effects of RA-loaded liposomes on human DC phenotype and function, including DC-driven T-cell development, both during the generation of monocyte-derived DCs (moDCs) as well as by priming immature moDCs. RA liposomes drove CD103+ DC differentiation as well as ALDH1A2 expression in DCs. Neutrophil-dependent Th17 cell development was reduced by RA-liposome-differentiated and RA-liposome-primed DCs. Moreover, RA liposome treatment shifted T-cell development toward a Th2 cell profile. Importantly, RA liposomes induced the development of IL-10-producing and FoxP3+ regulatory T cells (Tregs) of various Treg subsets, including ICOS+ Tregs, that were potent inhibitors of bystander memory T-cell proliferation. Taken together, RA-loaded liposomes could be a novel treatment avenue for IBD or CD patients.


Aldehyde Dehydrogenase 1 Family , Antigens, CD , Cell Differentiation , Dendritic Cells , Integrin alpha Chains , Liposomes , Retinal Dehydrogenase , T-Lymphocytes, Regulatory , Th17 Cells , Tretinoin , Humans , Tretinoin/pharmacology , Integrin alpha Chains/metabolism , Th17 Cells/immunology , Dendritic Cells/immunology , Dendritic Cells/drug effects , Antigens, CD/immunology , Antigens, CD/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Cell Differentiation/drug effects , Cell Differentiation/immunology , Retinal Dehydrogenase/metabolism , Immune Tolerance/drug effects , Cells, Cultured , Interleukin-10/metabolism , Interleukin-10/immunology , Forkhead Transcription Factors/metabolism , Inflammatory Bowel Diseases/immunology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Celiac Disease/immunology
8.
Eur J Immunol ; 54(5): e2350873, 2024 May.
Article En | MEDLINE | ID: mdl-38501878

Resident memory T (TRM) cells have been recently established as an important subset of memory T cells that provide early and essential protection against reinfection in the absence of circulating memory T cells. Recent findings showing that TRM expand in vivo after repeated antigenic stimulation indicate that these memory T cells are not terminally differentiated. This suggests an opportunity for in vitro TRM expansion to apply in an immunotherapy setting. However, it has also been shown that TRM may not maintain their identity and form circulating memory T cells after in vivo restimulation. Therefore, we set out to determine how TRM respond to antigenic activation in culture. Using Listeria monocytogenes and LCMV infection models, we found that TRM from the intraepithelial compartment of the small intestine expand in vitro after antigenic stimulation and subsequent resting in homeostatic cytokines. A large fraction of the expanded TRM retained their phenotype, including the expression of key TRM markers CD69 and CD103 (ITGAE). The optimal culture of TRM required low O2 pressure to maintain the expression of these and other TRM-associated molecules. Expanded TRM retained their effector capacity to produce cytokines after restimulation, but did not acquire a highly glycolytic profile indicative of effector T cells. The proteomic analysis confirmed TRM profile retention, including expression of TRM-related transcription factors, tissue retention factors, adhesion molecules, and enzymes involved in fatty acid metabolism. Collectively, our data indicate that limiting oxygen conditions supports in vitro expansion of TRM cells that maintain their TRM phenotype, at least in part, suggesting an opportunity for therapeutic strategies that require in vitro expansion of TRM.


Immunologic Memory , Listeria monocytogenes , Memory T Cells , Animals , Memory T Cells/immunology , Immunologic Memory/immunology , Mice , Listeria monocytogenes/immunology , Antigens, CD/metabolism , Antigens, CD/immunology , Integrin alpha Chains/metabolism , Mice, Inbred C57BL , Listeriosis/immunology , Lectins, C-Type/metabolism , Lectins, C-Type/immunology , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , Cytokines/metabolism , Cytokines/immunology , Lymphocyte Activation/immunology , Lymphocytic choriomeningitis virus/immunology , Intestinal Mucosa/immunology , CD8-Positive T-Lymphocytes/immunology , Intestine, Small/immunology , Cells, Cultured
9.
Mol Carcinog ; 63(3): 479-493, 2024 Mar.
Article En | MEDLINE | ID: mdl-38174862

Cancer-associated fibroblasts (CAFs) represent a major cellular component of the tumor (pre-)metastatic niche and play an essential role in omental dissemination of ovarian cancer. The omentum is rich in adipose, and adipose-derived mesenchymal stem cells (ADSCs) have been identified as a source of CAFs. However, the molecular events driving the phenotype shift of ADSCs remain largely unexplored. In this research, we focus on integrins, transmembrane receptors that have been widely involved in cellular plasticity. We found that integrin α7 (ITGA7) was the only member of the integrin family that positively correlated with both overall survival and progression-free survival in ovarian cancer through GEPIA2. The immunohistochemistry signal of ITGA7 was apparent in the tumor stroma, and a lower omental ITGA7 level was associated with metastasis. Primary ADSCs were isolated from the omentum of patients with ovarian cancer and identified by cellular morphology, biomarkers, and multilineage differentiation. The conditional medium of ovarian cancer cells induced ITGA7 expression decrease and phenotypic changes in ADSCs. Downregulation of ITGA7 in primary omental ADSCs led to decrease in stemness properties and emerge of characteristic morphology and biomarkers of CAFs. Moreover, the conditioned medium of ADSCs with ITGA7 depletion exhibited enhanced abilities to improve the migration and invasion of ovarian cancer cells in vitro. Overall, these findings indicate that loss of ITGA7 may induce the differentiation of ADSCs to CAFs that contribute to a tumor-supportive niche.


Antigens, CD , Cancer-Associated Fibroblasts , Integrin alpha Chains , Integrins , Mesenchymal Stem Cells , Ovarian Neoplasms , Female , Humans , Cancer-Associated Fibroblasts/pathology , Cell Proliferation , Mesenchymal Stem Cells/metabolism , Biomarkers , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Adipose Tissue/metabolism
10.
Appl Biochem Biotechnol ; 196(1): 245-260, 2024 Jan.
Article En | MEDLINE | ID: mdl-37119505

DNA methylation plays a vital role during the development of tumorigenesis. The purpose of this study is to identify candidate DNA methylation drivers during progression of bladder cancer (BLCA). The methylation spectrum in bladder cancer tissues was detected by CHARM analysis, and methylated ITGA8 was selected for further study due to its low expression. Methylation levels in BLCA tissues and cells were detected with methylated-specific PCR (MSP), while mRNA expression and methylation of ITGA8 were detected by qRT-PCR and MSP. After treatment with 5-Aza-dC (DNA methylation inhibitor), the proliferation, migration, and invasion abilities of BLCA cells were determined by MTT, wound healing, and transwell assays, respectively. Flow cytometric analysis was performed to evaluate any variance in the cell cycle. In addition, the effect of demethylated ITGA8 on BLCA tumor growth was verified with an in vivo xenograft tumor model. Based on the methylation profiling of BLCA, ITGA8 was identified to be hypermethylated. ITGA8 methylation levels in BLCA tissues and cells were upregulated, and 5-Aza-dC significantly suppressed ITGA8 methylation levels and increased ITGA8 mRNA expression. Furthermore, after treatment with 5-Aza-dC, the propagation, migration, and invasiveness of the cancer cells were inhibited, and more cancer cells were arrested at the G0/G1 phase. In vivo assays further demonstrated that 5-Aza-dC could impede BLCA tumor growth by repressing methylation levels of ITGA8 and increasing ITGA8 mRNA expression. Hypermethylated ITGA8 facilitated BLCA progression, and 5-Aza-dC treatment inhibited BLCA cell propagation and metastasis by decreasing methylation levels of ITGA8 and inducing cell cycle arrest.


DNA Methylation , Urinary Bladder Neoplasms , Humans , Cell Line, Tumor , Cell Proliferation/genetics , Azacitidine/pharmacology , Azacitidine/metabolism , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , RNA, Messenger/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Integrin alpha Chains/genetics , Integrin alpha Chains/metabolism
11.
J Pathol ; 261(2): 184-197, 2023 10.
Article En | MEDLINE | ID: mdl-37565309

Psoriasis is a chronic inflammatory skin condition. Repeated epicutaneous application of Aldara® (imiquimod) cream results in psoriasiform dermatitis in mice. The Aldara®-induced psoriasiform dermatitis (AIPD) mouse model has been used to examine the pathogenesis of psoriasis. Here, we used a forward genetics approach in which we compared AIPD that developed in 13 different inbred mouse strains to identify genes and pathways that modulated disease severity. Among our primary results, we found that the severity of AIPD differed substantially between different strains of inbred mice and that these variations were associated with polymorphisms in Itga11. The Itga11 gene encodes the integrin α11 subunit that heterodimerizes with the integrin ß1 subunit to form integrin α11ß1. Less information is available about the function of ITGA11 in skin inflammation; however, a role in the regulation of cutaneous wound healing, specifically the development of dermal fibrosis, has been described. Experiments performed with Itga11 gene-deleted (Itga11-/- ) mice revealed that the integrin α11 subunit contributes substantially to the clinical phenotype as well as the histopathological and molecular findings associated with skin inflammation characteristic of AIPD. Although the skin transcriptomes of Itga11-/- and WT mice do not differ from one another under physiological conditions, distinct transcriptomes emerge in these strains in response to the induction of AIPD. Most of the differentially expressed genes contributed to extracellular matrix organization, immune system, and metabolism of lipids pathways. Consistent with these findings, we detected a reduced number of fibroblasts and inflammatory cells, including macrophages, T cells, and tissue-resident memory T cells in skin samples from Itga11-/- mice in response to AIPD induction. Collectively, our results reveal that Itga11 plays a critical role in promoting skin inflammation in AIPD and thus might be targeted for the development of novel therapeutics for psoriasiform skin conditions. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Dermatitis , Integrin alpha Chains , Psoriasis , Animals , Mice , Dermatitis/genetics , Dermatitis/pathology , Disease Models, Animal , Imiquimod/adverse effects , Inflammation/pathology , Integrin alpha Chains/genetics , Integrin alpha Chains/metabolism , Psoriasis/chemically induced , Psoriasis/genetics , Skin/pathology
12.
J Immunol ; 211(4): 551-562, 2023 08 15.
Article En | MEDLINE | ID: mdl-37341508

Dermal regulatory T cells (Tregs) are essential for maintenance of skin homeostasis and control of skin inflammatory responses. In mice, Tregs in the skin are characterized by high expression of CD103, the αE integrin. Evidence indicates that CD103 promotes Treg retention within the skin, although the mechanism underlying this effect is unknown. The main ligand of CD103, E-cadherin, is predominantly expressed by cells in the epidermis. However, because Tregs are predominantly located within the dermis, the nature of the interactions between E-cadherin and CD103-expressing Tregs is unclear. In this study, we used multiphoton intravital microscopy to examine the contribution of CD103 to Treg behavior in resting and inflamed skin of mice undergoing oxazolone-induced contact hypersensitivity. Inhibition of CD103 in uninflamed skin did not alter Treg behavior, whereas 48 h after inducing contact hypersensitivity by oxazolone challenge, CD103 inhibition increased Treg migration. This coincided with E-cadherin upregulation on infiltrating myeloid leukocytes in the dermis. Using CD11c-enhanced yellow fluorescent protein (EYFP) × Foxp3-GFP dual-reporter mice, inhibition of CD103 was found to reduce Treg interactions with dermal dendritic cells. CD103 inhibition also resulted in increased recruitment of effector CD4+ T cells and IFN-γ expression in challenged skin and resulted in reduced glucocorticoid-induced TNFR-related protein expression on Tregs. These results demonstrate that CD103 controls intradermal Treg migration, but only at later stages in the inflammatory response, when E-cadherin expression in the dermis is increased, and provide evidence that CD103-mediated interactions between Tregs and dermal dendritic cells support regulation of skin inflammation.


Dermatitis, Contact , T-Lymphocytes, Regulatory , Animals , Mice , Cadherins/metabolism , Dermatitis, Contact/metabolism , Inflammation/metabolism , Integrin alpha Chains/metabolism , Oxazolone/metabolism , T-Lymphocytes, Regulatory/metabolism
13.
Cell Rep ; 42(6): 112550, 2023 06 27.
Article En | MEDLINE | ID: mdl-37224018

Diabetic kidney disease (DKD) is the most prevalent chronic kidney disease. Macrophage infiltration in the kidney is critical for the progression of DKD. However, the underlying mechanism is far from clear. Cullin 4B (CUL4B) is the scaffold protein in CUL4B-RING E3 ligase complexes. Previous studies have shown that depletion of CUL4B in macrophages aggravates lipopolysaccharide-induced peritonitis and septic shock. In this study, using two mouse models for DKD, we demonstrate that myeloid deficiency of CUL4B alleviates diabetes-induced renal injury and fibrosis. In vivo and in vitro analyses reveal that loss of CUL4B suppresses migration, adhesion, and renal infiltration of macrophages. Mechanistically, we show that high glucose upregulates CUL4B in macrophages. CUL4B represses expression of miR-194-5p, which leads to elevated integrin α9 (ITGA9), promoting migration and adhesion. Our study suggests the CUL4B/miR-194-5p/ITGA9 axis as an important regulator for macrophage infiltration in diabetic kidneys.


Diabetes Mellitus , Diabetic Nephropathies , MicroRNAs , Animals , Mice , Cullin Proteins/genetics , Cullin Proteins/metabolism , Diabetes Mellitus/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Integrin alpha Chains/metabolism , Macrophages/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
14.
Cell Rep ; 42(5): 112501, 2023 05 30.
Article En | MEDLINE | ID: mdl-37178117

Locoregional monotherapy with heterodimeric interleukin (IL)-15 (hetIL-15) in a triple-negative breast cancer (TNBC) orthotopic mouse model resulted in tumor eradication in 40% of treated mice, reduction of metastasis, and induction of immunological memory against breast cancer cells. hetIL-15 re-shaped the tumor microenvironment by promoting the intratumoral accumulation of cytotoxic lymphocytes, conventional type 1 dendritic cells (cDC1s), and a dendritic cell (DC) population expressing both CD103 and CD11b markers. These CD103intCD11b+DCs share phenotypic and gene expression characteristics with both cDC1s and cDC2s, have transcriptomic profiles more similar to monocyte-derived DCs (moDCs), and correlate with tumor regression. Therefore, hetIL-15, a cytokine directly affecting lymphocytes and inducing cytotoxic cells, also has an indirect rapid and significant effect on the recruitment of myeloid cells, initiating a cascade for tumor elimination through innate and adoptive immune mechanisms. The intratumoral CD103intCD11b+DC population induced by hetIL-15 may be targeted for the development of additional cancer immunotherapy approaches.


Antineoplastic Agents , Neoplasms , Mice , Animals , Integrin alpha Chains/metabolism , Neoplasms/metabolism , Cytokines/metabolism , Dendritic Cells/metabolism , Lymphocytes/metabolism , Antineoplastic Agents/metabolism , Immunologic Factors/metabolism , Mice, Inbred C57BL , Tumor Microenvironment
15.
Cell Rep ; 42(5): 112431, 2023 05 30.
Article En | MEDLINE | ID: mdl-37099426

While dysbiosis in the gut is implicated in the impaired induction of oral tolerance generated in mesenteric lymph nodes (MesLNs), how dysbiosis affects this process remains unclear. Here, we describe that antibiotic-driven gut dysbiosis causes the dysfunction of CD11c+CD103+ conventional dendritic cells (cDCs) in MesLNs, preventing the establishment of oral tolerance. Deficiency of CD11c+CD103+ cDCs abrogates the generation of regulatory T cells in MesLNs to establish oral tolerance. Antibiotic treatment triggers the intestinal dysbiosis linked to the impaired generation of colony-stimulating factor 2 (Csf2)-producing group 3 innate lymphoid cells (ILC3s) for regulating the tolerogenesis of CD11c+CD103+ cDCs and the reduced expression of tumor necrosis factor (TNF)-like ligand 1A (TL1A) on CD11c+CD103+ cDCs for generating Csf2-producing ILC3s. Thus, antibiotic-driven intestinal dysbiosis leads to the breakdown of crosstalk between CD11c+CD103+ cDCs and ILC3s for maintaining the tolerogenesis of CD11c+CD103+ cDCs in MesLNs, responsible for the failed establishment of oral tolerance.


Dysbiosis , Immunity, Innate , Humans , Dysbiosis/metabolism , Lymphocytes/metabolism , Integrin alpha Chains/metabolism , Dendritic Cells/metabolism , Anti-Bacterial Agents/metabolism , Intestinal Mucosa/metabolism
16.
Front Immunol ; 14: 1096818, 2023.
Article En | MEDLINE | ID: mdl-36911684

Integrins are closely related to the occurrence and development of tumors. ITGA8 encodes the alpha 8 subunit of the heterodimeric integrin alpha8beta1. Studies on the role of this gene in the occurrence and development of lung cancer are scarce. The examination of public databases revealed that ITGA8 expression was significantly lower in tumor tissue than that in normal tissue, especially in lung cancer, renal carcinoma, and prostate cancer. Survival analysis of patients with lung adenocarcinoma revealed that higher ITGA8 expression had better prognosis. ITGA8 was positively related to immune checkpoints and immunomodulators, whereas B cell, CD4+ T cell, CD8+ T cell, neutrophil, macrophage, and dendritic cell infiltration had the same correlation. Moreover, ITGA8 was negatively related to cancer stemness. We used an online database to predict the miRNAs and lncRNAs that regulate ITGA8 and obtained the regulatory network of ITGA8 through correlation analysis and Kaplan-Meier survival analysis. Quantitative real-time PCR and western blot analyses showed that LINC01798 regulates ITGA8 expression through miR-17-5p. Therefore, the regulatory network of ITGA8 may serve as a new therapeutic target to improve the prognosis of patients with lung cancer.


Carcinoma, Renal Cell , Kidney Neoplasms , Lung Neoplasms , MicroRNAs , Humans , Male , Integrin alpha Chains , Lung , Tumor Microenvironment , Prostatic Neoplasms
17.
J Ethnopharmacol ; 308: 116191, 2023 May 23.
Article En | MEDLINE | ID: mdl-36731809

ETHNOPHARMACOLOGICAL RELEVANCE: Dahuang Zhechong pill (DHZCP), a traditional Chinese medicine, was derived from the famous book Unk "Synopsis of Prescriptions of the Golden Chamber" during the Han dynasty. Owing to its ability to invigorate the circulation of blood in Chinese medicine, DHZCP is usually used for treating liver cirrhosis (LC) and hepatocellular carcinoma (HCC). Clinical application have shown that DHZCP exhibits satisfactory therapeutic effects in HCC adjuvant therapy; however, little is known about its underlying mechanisms. AIM OF THE STUDY: We aimed to clarify the mechanism of DHZCP against hepatic sinusoidal capillarization in rats with LC and HCC by inhibiting the MK/integrin signaling pathway of liver sinusoidal endothelial cells (LSECs). MATERIALS AND METHODS: The contents of 29 characteristic components in DHZCP were determined by ultraperformance liquid chromatography-tandem mass spectrometry. DEN (Diethylnitrosamine)-induced LC and HCC rat models were constructed, and DHZCP was administered when the disease entered the LC stage. After 4 or 12 weeks of administration, hematoxylin and eosin staining, Masson staining, Metavir score, and SSCP (Single strand conformation polymorphism) gene mutation detection were used to confirm tissue fibrosis and cancer. The levels of NO, ET-1 and TXA2, which can regulate vasomotor functions and activate the MK/Itgα6/Src signaling pathway were evaluated by using immunohistochemistry, chemiluminescence, immunofluorescence, Western blot analysis, and enzyme-linked immunosorbent assay (ELISA). Similar methods were also used to evaluate the levels of VEGF, VEGFR, Ang-2 and Tie, which can promote pathological angiogenesis and activate the MK/Itgα4/NF-κB signaling pathway. In vitro cell experiments were performed using potential pharmacodynamic molecules targeting integrins in DHZCP were selected by molecular docking, and the effects of these molecules on the function of LSECs were studied by Itgα4+ and Itgα6+ cell models. RESULTS: At the stage of LC, the animal experiments demonstrated that DHZCP mainly inhibited the MK/Itgα6 signaling pathway to increase the number and size of hepatic sinus fenestration, reversed the ET-1/NO and TXA2/NO ratios, regulated hepatic sinus relaxation and contraction balance, reduced the portal vein pressure, and inhibited cirrhotic carcinogenesis. At the HCC stage, DHZCP could also significantly inhibit the MK/Itgα4 signaling pathway, reduce pathological angiogenesis, and alleviate disease progression. The results of the cell experiments showed that Rhein, Naringenin, Liquiritin and Emodin-8-O-ß-D-glucoside (PMEG) were involved in vascular regulation by affecting the MK/integrin signaling pathway. Liquiritin and PMEG mainly blocked the MK/α6 signal, which is important in regulating the vasomotor function of the liver sinus. Naringenin and Rhein mainly acted by blocked the signaling of MK/α4 action signal, which are potent molecules that inhibit pathological angiogenesis. CONCLUSIONS: DHZCP could improve the hepatic sinusoidal capillarization of LC and HCC by inhibiting the MK/Itgα signaling pathway and inhibited disease progression. Rhein, Naringenin, Liquiritin and PMEG were the main active molecules that affected the MK/Itgα signaling pathway.


Carcinoma, Hepatocellular , Drugs, Chinese Herbal , Integrin alpha Chains , Liver Cirrhosis , Liver Neoplasms , Neovascularization, Pathologic , Animals , Rats , Carcinoma, Hepatocellular/blood supply , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Disease Progression , Endothelial Cells/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Neoplasms/blood supply , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Molecular Docking Simulation , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/pathology , Signal Transduction , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Capillaries/drug effects , Liver/blood supply , Liver/drug effects , Integrin alpha Chains/genetics , Integrin alpha Chains/metabolism
18.
Br J Cancer ; 128(8): 1466-1477, 2023 04.
Article En | MEDLINE | ID: mdl-36759726

BACKGROUND: The clinical significance and immune correlation of CD103+ cells in prostate cancer (PCa) remain explored. METHODS: In total, 1080 patients with PCa underwent radical prostatectomy from three cohorts were enrolled for retrospective analysis. Tumour microarrays were constructed and fresh tumour samples were analysed by flow cytometry. RESULTS: High CD103+ cell infiltration correlated with reduced biochemical recurrence (BCR)-free survival in PCa. Adjuvant hormone therapy (HT) prolonged the BCR-free survival for high-risk node-negative diseases with CD103+ cell abundance. CD103+ cell infiltration correlated with less cytotoxic expression and increased infiltration of CD8+ and CD4+ T cells, M1 macrophages and mast cells in PCa. Intratumoral CD8+ T cell was the predominant source of CD103, and the CD103+ subset of CD8+ T cells was featured with high IL-10, PD-1 and CTLA-4 expression. Tumour-infiltrating CD103+ CD8+ T cells exerted anti-tumour function when treated with HT ex vivo. DISCUSSION: CD103+ cell infiltration predicted BCR-free survival and response to adjuvant HT in PCa. CD103+ cell infiltration correlated with an enriched but immune-evasive immune landscape. The study supported a model that CD103 expression conferred negative prognostic impact and immunosuppressive function to tumour-infiltrating CD8+ T cells, while the CD103+ CD8+ T cells exhibited a powerful anti-tumour immunity with response to HT.


CD8-Positive T-Lymphocytes , Prostatic Neoplasms , Humans , Male , Integrin alpha Chains , Lymphocytes, Tumor-Infiltrating , Prevalence , Prognosis , Prostatic Neoplasms/therapy , Prostatic Neoplasms/metabolism , Retrospective Studies
19.
J Chemother ; 35(6): 514-526, 2023 Oct.
Article En | MEDLINE | ID: mdl-36484486

Chemoresistance limits cisplatin (DDP)-mediated treatment for gastric cancer (GC). Circular RNA (circRNA) acts an important role in chemoresistance. However, the underlying mechanism of circPDSS1 regulating DDP sensitivity in GC remains unclear. The expression patterns of circPDSS1, miR-515-5p and integrin subunit alpha 11 (ITGA11) were analyzed by qRT-PCR. Protein expression was checked by Western blotting analysis. Cell viability was investigated by 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell proliferation was evaluated by colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) assay. The analysis of cell apoptosis, migration and invasion was performed by flow cytometry analysis and transwell assays. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to identify the associations among circPDSS1, miR-515-5p and ITGA11. In vivo assay was implemented using a xenograft mouse model assay. CircPDSS1 and ITGA11 expression were significantly upregulated, whereas miR-515-5p was downregulated in DDP-resistant GC tissues and cells in comparison with controls. CircPDSS1 depletion reduced DDP resistance, cell proliferation, migration and invasion but induced cell apoptosis in DDP-resistant GC cells. CircPDSS1 directly bound to miR-515-5p. CircPDSS1-mediated actions were dependent on the regulation of miR-515-5p. Besides, miR-515-5p was associated with ITGA11, and circPDSS1 regulated ITGA11 expression by binding to miR-515-5p. Overexpression of miR-515-5p improved DDP sensitivity owing to the downregulation of ITGA11. Further, circPDSS1 mediated DDP sensitivity by regulating miR-515-5p and ITGA11 in vivo. CircPDSS1 conferred DDP resistance through the miR-515-5p/ITGA11 axis in GC cells.


MicroRNAs , Stomach Neoplasms , Humans , Animals , Mice , Cisplatin/pharmacology , Cisplatin/therapeutic use , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , MicroRNAs/genetics , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Cell Proliferation , Integrin alpha Chains
20.
Clin Genet ; 103(1): 114-118, 2023 01.
Article En | MEDLINE | ID: mdl-36089563

Integrin Subunit Alpha 8 gene (ITGA8) encodes an integrin chain that is known to be critical in the early stage of the kidney development. Bi-allelic pathogenic variants in ITGA8 are associated with bilateral renal agenesis, as well as anomalies involving urogenital system. Here, we report two unrelated patients presenting with slowly progressing chronic kidney disease associated with bilateral renal hypodysplasia carrying homozygous loss of function variants in the ITGA8 gene. These results broaden the clinical and genotypic spectrum of ITGA8 defects, revealing the high and unexpected degree of phenotypic heterogeneity of this autosomal recessive disease. Our study emphasizes the usefulness of Next-Generation Sequencing in unraveling the genetic cause of chronic kidney disease of unknown etiology, and raises the question of genetic modifiers involved in the variation of the phenotypes associated with autosomal recessive ITGA8 pathogenic variants.


Integrin alpha Chains , Kidney Diseases , Humans , Integrin alpha Chains/genetics , Kidney Diseases/genetics
...